Coming Soon:
Controlled Cell Adhesion With ibidi Micropatterning

The ibidi µ-Patterning technology enables spatially defined cell adhesion for various 2D and 3D cell culture applications.

Miniaturized adhesive patterns (e.g., lines, squares, or dots) are irreversibly printed on the non-adhesive Bioinert surface of the ibidi Polymer Coverslip, allowing for precisely controlled cell adhesion. The µ-Patterns are dry-stable, sterile, and ready to use.

The µ-Pattern, the Bioinert surface, and the ibidi Polymer Coverslip are all optimized for high resolution imaging and microscopy.


Single cells Patches Spheroids Lines for neurons

Interested in using the ibidi µ-Patterning for your specific application?

Please send a request to [email protected] and we will be
happy to co-develop your product!


mp_principle.jpg


mp_ibidi_pattern.jpg

The Bioinert Surface

  • Long-term stable, and biologically inert surface
  • No cell or protein adhesion (full passivation)
  • Layered onto the ibidi Polymer Coverslip—the highest optical quality for imaging

Learn more here.

Specifications of µ-Patterns

Size (resolution) > 3 µm; different sizes possible
Geometry Circles, squares, lines, your specific geometry
Available surfaces - Specific cell adhesion (RGD or specific molecule/peptide)
- unspecific cell and molecule adhesion
- Custom-specific adhesion via click chemistry
Optics - Very low autofluorescence for high resolution imaging
- No visibility of µ-Patterns in phase contrast/brightfield
- Optional µ-Pattern visibility under fluorescence
Chamber and well formats ibidi µ-Slides and µ-Plates; non-ibidi formats possible
Shipping Room temperature

cat_plates.jpg

Application Examples

Single-Cell Arrays

The size of the µ-Pattern can be adapted to the morphology of the cell type of interest, so that an array of single cells can be conveniently analyzed using applications such as high-resolution imaging.

oem_mp_example_singlecell.jpg

Single-cell array with RCC26 tumor cells. µ-Patterning was done with cyclic RGD adhesion spots on the Bioinert surface. Spot size 30 µm x 30 µm. Phase contrast microscopy, 4x objective lens.

Multi-Cell Arrays

By using different geometries and sizes of the µ-Patterning, multi-cell arrays can be performed with defined adhesion for various applications, such as high-resolution imaging.

oem_mp_example_multicell.jpg

Multi-cell array with RCC26 tumor cells. µ-Patterning was done with cyclic RGD adhesion spots on the Bioinert surface. Spot size 200 µm x 200 µm. Phase contrast microscopy, 4x objective lens.

Spheroid Generation

Defined adhesion spots, surrounded by Bioinert, are able to catch all adherent single cells from a cell suspension. Bioinert is fully non-cell-attachable. This forces all cells to aggregate to each other at the adhesion spots, thus forming spheroids in a defined and controllable way.

oem_mp_example_spheroid.gif

Suspension of NIH-3T3 cell line seeded on 200 µm adhesion spots, 64 hours live cell imaging, phase contrast, 4x objective lens.

Spheroid/Organoid Co-Culture

The size and the cell adhesion properties of the µ-Patterning can be adjusted to hold 3D spheroids and microtissues in position. Using this setup, cells in 3D can be studied during proliferation, differentiation, invasion, and migration.


oem_mp_example_NIH-3T3_3D_spheroids.jpg

NIH-3T3 3D spheroids (left) plated on adhesive, Cy3-labeled spots (right) with a 300 µm diameter. 10x objective lens.


oem_mp_example_different_spheroids.jpg

Generation of 3D spheroids from HT-1080, MCF-7, and NIH-3T3 cells. The spheroids were generated using the agarose assay, then put on 300 µm adhesive spots for positioning. Phase contrast, 4x objective lens.

Neuronal Cell Applications

µ-Patterning can also be used for neuronal stem cell culture, axonal isolation and outgrowth, and neurite polarization.


oem_mp_example_neuronal.jpg

µ-Patterns for neuronal cell assays: Cy3-labeled adhesion lines and spots for fluorescence visualization. Line width: 4 µm, spot diameter: 20 µm.


Interested in using the ibidi µ-Patterning for your special application?

Please send a request to [email protected] and we will be happy to co-develop your product!