

Abstract

The Need

- Switch from 2D to 3D applications in recent years due to higher validity of the experimental outcome concerning in vivo relevance.
- Spheroid generation, cultivation and observation over long time period combined with high quality imaging often laborious

Our Solution

- Micropatterned adhesion ligands on highly passivated coverslip combined with a perfusable channel system
- Generation of homogenously distributed spheroids within one channel either by seeding single cells or immobilization of preformed aggregates.
- Perfusion at low flow rates enables homogenous nutrient supply as well as metabolite analysis together with toxicological screenings

Micropatterning on the Bioinert Surface

The Bioinert Principle

• Thin polyol hydrogel layer, covalently bound to the ibidi Polymer Coverslip #1.5

Features

- Biologically inert—no cell or protein adhesion
- Long-term stable
- Ready-to-use
- Highest optical quality for imaging

Functionalization

- Specific cell adhesion/tethering for weeks.
- Custom-specific adhesion via click chemistry
- Defined cell and molecule immobilization

Optics

- Very low autofluorescence
- No visibility of µ-Patterns in brightfield
- Optional µ-Pattern fluorescence

Cell adhesion (e.g., ECM) or tethering (e.g., spec. AB) Ligand

> Highly specific, covalent coupling

crosslinker binding

Ligand pattern

Bioinert

surface

ibidi GmbH, Gräfelfing, Germany

Micropatterned Adhesion Sites for Spheroid Cultivation Under Flow

M. Balles¹, S. Teymouri¹, R. Zantl¹, J. Schwarz¹

Using the micropatterning technology, cells are immobilized (adhered/tethered) on spots of different sizes offering the formation of single cell, multi cell or cell aggregate arrays.

In contrast to nonstructured cell assemblies, these arrays allow a detailed optical analysis of the same cells/aggregates over a long time period.

Immobilization of Preformed Spheroids/Organoids

Spheroid immobilization: Preformed 3T3 cell aggregates were stably localized on a μ-Pattern (dashed line, 200 μm) in the μ-Slide VI^{0.4} Luer.

ibidi Polymer Coverslip (180 µm)

+49 (0) 89 520 4617 - 0

Defined cell aggregates

Homogeneous sphere distribution

Spheroid Culture Under Constant Media Circulation

By creating micropatterns within a µ-Slide VI^{0.4} Luer, aggregates on the pattern can be constantly supplied with fresh media by perfusing the system with the ibidi Pump System.

Fibroblasts (3T3) under flow conditions at 3 dyn/cm² compared to the static control, cultured in the μ-Slide VI^{0.4} Luer for 14 days.

By applying a constant media flux around the cell aggregates, spheroids become more compact and round.

Fibroblast (3T3) aggregates under flow conditions at 3 dyn/cm² form a compact and round spheroid over time.

Outlook

- Toxicological screenings in period spheroid cultures
- Tethering cell aggreagates to by specific antibody interactio

erfused o patterns ons	 Combining spheroid cultivation on patterns with invasion studies by overlaying an ECM matrix
	 Develop reversible binding to retrieve aggregates for further analysis

ibidi.com