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Results: GelMA 10 % was chosen to be used as a surrounding ink, since it facilitates optimal adhesion and monolayer formation of the 
cells. The printability of Pluronics as sacrificial material was characterized and fine-tuned. After creating the channels and seeding cells, 
their viability was shown to be sustained, and tight junction formation was clearly visible. Finally, perfusion with a fluorescent dye showed 
the effective barrier function of the cell layer, indicating that that the cells formed a viable model of the proximal tubule. 

Outlook: The universal approach of 3D-printing allows for printing of arbitrary structures, which can be adapted to mimic specific 
geometries of tissue models, opening a large field of applications. We believe that the benefits of our platform will enable scientist to 
develop tissue models more quickly and perform pharmaceutical studies on a large scale.
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Viscosity and elasticity of the bioinks

Adhesion and monolayer formation on 2D hydrogel

Introduction
Challenge: Bioprinting has come into focus as a method to create 
specialized organ-on-a-chip models, providing high flexibility and 
reproducibility of the models. However, realizing such models is usually 
time-consuming, costly and requires a high degree of expertise.

Our solution: A microfluidic device which makes 3D-printing on a chip 
accessible and allows perfusion of arbitrary hollow structures.

Methods: In collaboration with CELLINK and the NMI, we tested several

bioink candidates to develop a proximal tubule model. The rheological 
properties of all bioinks were assessed. Adhesion and monolayer 
formation of the cells were tested. The viability of the cells was 
assessed, and tight junction formation was confirmed by staining. We 
also measured the diffusion of fluorescent dextran through the layer.  

Results: The cells formed a functional monolayer and created a viable 
model of the proximal tubule. 
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500 µm

Fluorescent dextran was filled into the 
channels with and without cells.
Intensity outside and inside was measured 
to calculate the permeability. 
Result: The reduced permeability in the 
cell-covered channel indicates a dense 
network and functional barrier formation.

1. Fill base layer with hydrogel. 2. Print sacrificial structure. 3. Seal chamber

4. Fill chamber with hydrogel. 5. Remove sacrificial material 6. Seed cells into channels
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Endothelial cell adhesion was tested on hydrogel candidates:
• Gelatin methacrylate 10 wt%
• Gelatin methacrylate 15 wt%
• Gelatin methacrylate 10 wt% + Laminin (LN)  
Significance tested with Kruskal-Wallis test, error bars: SEM, *p < 0.05
Results: Adhesion of cells was significantly better on pure GelMA 
compared to GelMA + LN, the concentration did not have significant 
influence. Monolayer formation was similar on all tested hydrogels.
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Diffusion through cell layer
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Cross section

The final stiffness is dependent on 
the polymer concentration and ther-
mal gelling before photocrosslinking. 
The difference is significant between 
final stiffness for all conditions tes-
ted by t-test with p < 0.005.  
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Pluronics 30 % provides sufficient 
viscosity for good printing fidelity, 
and a melting point at about 13 °C 
so that it can be printed at room 
temperature and easily be melted by 
applying cold PBS.    
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